ExplaiNAble BioLogical Age (ENABL Age): an artificial intelligence framework for interpretable biological age
Biological age is a measure of health that offers insights into ageing. The existing age clocks, although valuable, often trade off accuracy and interpretability. We introduce ExplaiNAble BioLogical Age (ENABL Age), a computational framework that combines machine-learning models with explainable artificial intelligence (XAI) methods to accurately estimate biological age with individualised explanations. To construct the ENABL Age clock, we first predicted an age-related outcome (eg, all-cause or cause-specific mortality), and then rescaled these predictions to estimate biological age, using UK Biobank and National Health and Nutrition Examination Survey (NHANES) datasets. We adapted existing XAI methods to decompose individual ENABL Ages into contributing risk factors. For broad accessibility, we developed two versions: ENABL Age-L, based on blood tests, and ENABL Age-Q, based on questionnaire characteristics. Finally, we validated diverse ageing mechanisms captured by each ENABL Age clock through genome-wide association studies (GWAS) association analyses. Our ENABL Age clock was significantly correlated with chronological age (r=0·7867, p<0·0001 for UK Biobank; r=0·7126, p<0·0001 for NHANES). These clocks distinguish individuals who are healthy (ie, their ENABL Age is lower than their chronological age) from those who are unhealthy (ie, their ENABL Age is higher than their chronological age), predicting mortality more effectively than existing clocks. Groups of individuals who were unhealthy showed approximately three to 12 times higher log hazard ratio than healthy groups, as per ENABL Age. The clocks achieved high mortality prediction power with an area under the receiver operating characteristic curve of 0·8179 for 5-year mortality and 0·8115 for 10-year mortality on the UK Biobank dataset, and 0·8935 for 5-year mortality and 0·9107 for 10-year mortality on the NHANES dataset. The individualised explanations that revealed the contribution of specific characteristics to ENABL Age provided insights into the important characteristics for ageing. An association analysis with risk factors and ageing-related morbidities and GWAS results on ENABL Age clocks trained on different mortality causes showed that each clock captures distinct ageing mechanisms. ENABL Age brings an important leap forward in the application of XAI for interpreting biological age clocks. ENABL Age also carries substantial potential in practical settings, assisting medical professionals in untangling the complexity of ageing mechanisms, and potentially becoming a valuable tool in informed clinical decision-making processes.